合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 槐糖脂的屬性:脂肪酸底物和混合比例的影響——結(jié)果與討論
> 高鹽油藏下兩性/陰離子表面活性劑協(xié)同獲得油水超低界面張力的方法(二)
> 溫度對甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(二)
> 基于懸滴法測量硅油黏滯液體的表面張力系數(shù)——結(jié)果與討論、結(jié)論
> 無機鹽濃度對HPAM不同復(fù)配體系降低界面張力能力的影響(二)
> ?強子夸克相變的表面張力數(shù)值變化研究(一)
> 基于涂料樹脂表面張力分析漆膜縮孔產(chǎn)生原因
> 應(yīng)用熒光顯微鏡研究了蛋白質(zhì)在氣-水界面的組裝——結(jié)論、致謝!
> 納米熔鹽形成機理、表面張力測定及影響因素研究(二)
> 純水表面張力與液膜拉伸形變量關(guān)系|純水表面張力測試數(shù)據(jù)
推薦新聞Info
-
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(三)
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(二)
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(一)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(三)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(二)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(一)
> 利用LB膜分析儀技術(shù)制備納米環(huán)組裝陣列,得到一種具有結(jié)構(gòu)色的材料
> 覆蓋有疏水網(wǎng)的開放管道液體輸運穩(wěn)定性研究(下)
> 覆蓋有疏水網(wǎng)的開放管道液體輸運穩(wěn)定性研究(上)
> 水、常溫液態(tài)金屬等9種流體對液滴碰撞壁面影響的數(shù)值研究(三)
表面活性劑是否對斥水性土壤的潤濕性有影響?——概括、介紹
來源:上海謂載 瀏覽 1795 次 發(fā)布時間:2021-11-09
概括
土壤防水性通常不穩(wěn)定,例如量化防水性的常用方法 度數(shù)——水滴滲透時間 (WDPT) 測試。 水的動態(tài)滲透和滲透 排斥性土壤通常歸因于固液界面能 (γSL) 的降低或液氣界面能 (γLV) 的降低,或兩者兼而有之。 γSL 的減少可能是由于覆蓋土壤顆粒表面的有機分子的構(gòu)象變化、水合作用或重排造成的 與水接觸的結(jié)果,而 γLV 的減少可能是由于土壤中的表面活性有機化合物溶解在水滴中。 本研究的目的是明確測試 第二種機制在不穩(wěn)定排斥性土壤中動態(tài)潤濕過程中的作用,通過檢查 不同提取后獲得的驅(qū)蟲土壤中水提取物的液滴滲透時間 (DPT) 時間和不同的土壤:水比。 確實發(fā)現(xiàn)土壤提取物具有較低的表面張力(γLV 約 51–54 mN m-1 ) 而不是蒸餾水。 然而,土壤中的 DPT 在水中提取 排斥土壤通常與水相同或更大。 具有與土壤提取物相同的電導(dǎo)率和一價/二價陽離子比例的鹽溶液,但缺乏表面活性 有機物質(zhì),具有與提取物相同的 DPT。 相比之下,乙醇溶液的 DPT 具有與土壤相同的 γLV、電導(dǎo)率和一價/二價陽離子比例 提取,速度要快得多。 乙醇溶液通常用作減少 γLV 的試劑,因此, 降低 DPT。 得出的結(jié)論是,含水土壤中表面活性的、土壤衍生的有機物質(zhì) 提取物對潤濕動力學(xué)沒有貢獻,因此,這種解釋動力學(xué)的機制 水滲透到防水土壤中被拒絕。 還得出結(jié)論,快速滲透 乙醇溶液的變化不僅要歸因于 γLV 的變化,還要歸因于任一或兩者的變化 γSL 和固氣界面能 (γSV)。 這些結(jié)果與廣為接受的結(jié)果形成鮮明對比 邏輯范式。
介紹
土壤拒水性,定義為土壤 當(dāng)水被施加到它的表面時不會自發(fā)潤濕, 在世界各地的土壤中得到越來越多的認可(Wallis & 霍恩,1992 年; Doerr 等人,2002 年)。 土壤防水性,或 疏水性,可以特別有效地防止或 阻礙水向下運動,將其引導(dǎo)到結(jié)構(gòu)或結(jié)構(gòu)優(yōu)先流動路徑,或產(chǎn)生不穩(wěn)定的不規(guī)則潤濕前沿。 盡管它的重要性和 深入研究(到 2004 年發(fā)表了 1000 多篇論文;Dekker et al., 2005),盡管主要因素是導(dǎo)致土壤拒水性的機制仍遠未了解 包括礦物顆粒上的土壤有機質(zhì)涂層、某些真菌、細菌和植物物種,以及火災(zāi)(Doerr 等人, 2000)。
防水性的主要標(biāo)準(zhǔn)是 放置在水平土壤上的水滴的接觸角 y 表面。 所涉及的三個階段之間的關(guān)系 (固體(S),液體(L)和蒸汽(V))在平衡是 由楊方程描述:
其中 g 是界面能。 根據(jù)經(jīng)典 Young 方程,在 y > 90° 時,水滴將保持在 表面和土壤將被歸類為驅(qū)蟲劑。 在天然土壤中,通常表現(xiàn)出不穩(wěn)定的排斥性(即可變 隨著時間的推移),由于與 水。 土壤拒水性的這種時間不穩(wěn)定性是 確實以常見的量化方法為例 排斥度——水滴滲透時間(WDPT) 測試 (Letey, 1969)。 將一滴水放在物體表面 排斥性土壤不會立即滲透(y > 90°),但具有 時間流逝,水滴滲入。 過去的 時間被用作排斥程度的量度。
通常,最初具有排斥性的土壤的潤濕動力學(xué)為 假定是由于 (i) 固液減少 界面能 (γSL),或 (ii) 減少液體蒸汽 界面能(γLV),或兩者(等式(1)),導(dǎo)致 接觸角 y 的減小(例如 Letey 等,2000)。 這 γSL 的減少可能是由于構(gòu)象變化造成的, 有機分子涂層的水合或重排 由于與水接觸而導(dǎo)致的土壤顆粒表面 (Tschapek, 1984; Ma'shum & Farmer, 1985; Doerr et al., 2000; Ellerbrock 等人,2005 年)。 γLV 的降低可能是由于 土壤表面活性有機化合物的溶解 進入水滴 (Chen & Schnitzer, 1978; Tschapek, 1984; 巴雷特和 Slaymaker,1989 年; 多爾等人,2000 年; 哈拉斯& 紹曼,2006 年)。
本研究的目的是明確測試 第二種假設(shè)機制,即表面溶解 活性物質(zhì)進入水滴導(dǎo)致減少 γLV,用于解釋初始驅(qū)蟲劑的潤濕動力學(xué) 土壤。 這是通過檢查液滴穿透時間來完成的 不同提取時間后獲得的土壤-水提取物 并且在不同的土壤:水比例下。 驅(qū)避不同土壤 WDPT 測量的排斥性的起源和程度是 測試。