合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 4種油醇烷氧基化物平衡和動態表面張力、潤濕性、泡沫性、乳化性質研究(三)
> 如何清理水中的油污?
> 用吸管往水里吹氣,為什么水里的氣泡不像氣球一樣越吹越大?而是分成很多個連續的小氣泡冒出來?
> 單層膜界面上亞微米顆粒表面張力阻力系數修正——顆粒在單層膜上的阻力系數
> 新型助排劑配方組分、對表/界面性能的影響及助排效果(三)
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規律(一)
> 超低界面張力環保型高溫高鹽油藏的驅油表面活性劑配方比例及制備(一)
> 電極與溶液界面的吸附現象
> 硅基納米原位乳化減阻劑與原油的界面張力達到10-1mN/m數量級,提高原油采收率
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(四)
推薦新聞Info
-
> 表面能與表面張力對凍干制劑中“小瓶霧化”現象的影響機制研究
> 新型懸滴實驗系統的研制與二甲基亞砜/甲醇混合物表面張力測量(二)
> 新型懸滴實驗系統的研制與二甲基亞砜/甲醇混合物表面張力測量(一)
> 噻噸酮光敏劑體系:光電轉換與顯色特性的深度解析
> 溫度、締合強度、截斷半徑對球形空腔中締合流體界面張力的影響(二)
> 溫度、締合強度、截斷半徑對球形空腔中締合流體界面張力的影響(一)
> 一文讀懂什么是超微量天平
> LiF-CaF?-Yb?O?熔鹽體系表面張力的測定及其對Ni-Yb合金電解的指導意義(二)
> LiF-CaF?-Yb?O?熔鹽體系表面張力的測定及其對Ni-Yb合金電解的指導意義(一)
> 表面張力在封閉腔體自然對流換熱中的角色深度分析
新型懸滴實驗系統的研制與二甲基亞砜/甲醇混合物表面張力測量(二)
來源:《化學工程》 瀏覽 23 次 發布時間:2025-12-04
圖7 二甲基亞砜表面張力實驗值擬合得到的方程與文獻實驗值的偏差
圖7為二甲基亞砜表面張力實驗數據擬合得到的方程與文獻實驗值的偏差。本文與Iqbal等[11],Markarian等(2009)[12]和Korosi等[13]毛細上升法測量的二甲基亞砜表面張力數據吻合較好,與Markarian等(2007)[14]數據偏差較大,最大偏差為2.57%。由圖7可以看出Markarian分別在2007和2009年發表的數據偏差也較大。
圖8為甲醇表面張力實驗值擬合得到的方程與文獻實驗值的偏差,本文數據與Santos等[15],Jasper[16],Kijevcanin等[17]和Souckova等[18]數據吻合得較好,與Vazquez等[19]數據偏差稍大,最大偏差為1.6%。
綜上所述,除少數文獻實驗值偏大于本文方程,大多數文獻數據點與本文方程偏差均不超過±1%。
3.3 二甲基亞砜/甲醇二元混合物表面張力的實驗研究表2為利用懸滴實驗系統測量的二甲基亞砜與甲醇混合物在303.15–323.15K區間內,摩爾分數為0.1–0.9的表面張力值,密度數據取自文獻[21],x1表示混合溶液中二甲基亞砜的摩爾分數。采用XS205精密分析天平配置混合溶液,其測量精度為±0.5mg。
表2 二甲基亞砜/甲醇混合溶液的表面張力| T / K | x1 / mol | ρ / (kg·m-3) | σ / (mN·m-1) | T / K | x1 / mol | ρ / (kg·m-3) | σ / (mN·m-1) |
|---|---|---|---|---|---|---|---|
| 303.15 | 0.10148 | 838.7 | 23.61 | 313.15 | 0.59952 | 1005.1 | 32.89 |
| 303.15 | 0.20005 | 885.8 | 25.65 | 313.15 | 0.69708 | 1026.8 | 35.09 |
| 303.15 | 0.30124 | 925.4 | 27.86 | 313.15 | 0.80068 | 1047.6 | 36.83 |
| 303.15 | 0.40086 | 959.3 | 29.94 | 313.15 | 0.89908 | 1065.7 | 38.72 |
| 303.15 | 0.50034 | 988.8 | 32.44 | 318.15 | 0.10148 | 826.2 | 22.39 |
| 303.15 | 0.59952 | 1013.6 | 33.95 | 318.15 | 0.20005 | 871.8 | 24.38 |
| 303.15 | 0.69708 | 1034.8 | 35.91 | 318.15 | 0.30124 | 911.4 | 26.45 |
| 303.15 | 0.80068 | 1055.4 | 37.65 | 318.15 | 0.40086 | 944.9 | 28.83 |
| 303.15 | 0.89908 | 1073.6 | 40.07 | 318.15 | 0.50034 | 973.9 | 30.59 |
| 308.15 | 0.10148 | 835.6 | 23.2 | 318.15 | 0.59952 | 998.9 | 32.34 |
| 308.15 | 0.20005 | 882.1 | 25.23 | 318.15 | 0.69708 | 1020.5 | 34.52 |
| 308.15 | 0.30124 | 921.5 | 27.4 | 318.15 | 0.80068 | 1041.0 | 36.28 |
| 308.15 | 0.40086 | 955.1 | 29.53 | 318.15 | 0.89908 | 1058.8 | 38.35 |
| 308.15 | 0.50034 | 984.1 | 31.86 | 323.15 | 0.10148 | 821.4 | 21.98 |
| 308.15 | 0.59952 | 1008.6 | 33.32 | 323.15 | 0.20005 | 866.9 | 24.01 |
| 308.15 | 0.69708 | 1029.7 | 35.55 | 323.15 | 0.30124 | 906.2 | 26.01 |
| 308.15 | 0.80068 | 1050.3 | 37.27 | 323.15 | 0.40086 | 939.7 | 28.51 |
| 308.15 | 0.89908 | 1068.2 | 39.39 | 323.15 | 0.50034 | 968.8 | 30.05 |
| 313.15 | 0.10148 | 830.9 | 22.77 | 323.15 | 0.59952 | 994.0 | 31.85 |
| 313.15 | 0.20005 | 876.9 | 24.80 | 323.15 | 0.69708 | 1015.7 | 33.97 |
| 313.15 | 0.30124 | 917.0 | 26.99 | 323.15 | 0.80068 | 1036.2 | 35.59 |
| 313.15 | 0.40086 | 950.8 | 29.16 | 323.15 | 0.89908 | 1053.9 | 37.75 |
| 313.15 | 0.50034 | 979.9 | 31.24 |
圖9 二甲基亞砜/甲醇混合溶液表面張力與溫度的關系
如圖9所示為不同配比下的二甲基亞砜/甲醇混合溶液表面張力與溫度關系的示意圖。由圖可知,不同配比下混合溶液的表面張力均大于相應溫度下甲醇的表面張力,而小于相應溫度下二甲基亞砜的表面張力;隨著溫度的升高不同配比下的二甲基亞砜/甲醇混合溶液表面張力隨溫度的升高基本呈線性減小的趨勢;同一溫度下的二甲基亞砜/甲醇混合溶液表面張力隨二甲基亞砜摩爾分數的增大呈現逐漸增大的趨勢。
本文利用懸滴實驗系統對二甲基亞砜和甲醇在溫度范圍為303.15-323.15K的表面張力進行了實驗研究,并擬合得到了表面張力的計算方程,實驗值與擬合方程計算值的最大偏差和平均偏差分別為0.085%, 0.06%和0.16%, 0.089%。在此基礎上,測量了摩爾分數在0.1–0.9之間二甲基亞砜/甲醇二元混合溶液在303.15, 308.15, 313.15, 318.15, 323.15K共計5個溫度點下的表面張力。可知,不同配比下的二甲基亞砜/甲醇混合溶液,其表面張力隨溫度的升高均呈線性減小的趨勢,測量結果符合物質表面張力隨溫度的變化規律,可為工程應用提供基礎熱物性數據。





